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Abstract

We start from a hyperbolic Dubrovin and Novikov (DN) hydrodynamic-type
system of dimension n which possesses Riemann invariants and we settle the
necessary conditions on the conservation laws in the reciprocal transformation
so that, after such a transformation of the independent variables, one of the
metrics associated with the initial system is flat. We prove the following
statement: let n � 3 in the case of reciprocal transformations of a single
independent variable or n � 5 in the case of transformations of both the
independent variables; then the reciprocal metric may be flat only if the
conservation laws in the transformation are linear combinations of the canonical
densities of conservation laws, i.e. the Casimirs, the momentum and the
Hamiltonian densities associated with the Hamiltonian operator for the initial
metric. Then, we restrict ourselves to the case in which the initial metric is either
flat or of constant curvature and we classify the reciprocal transformations of
one or both the independent variables so that the reciprocal metric is flat. Such
characterization has an interesting geometric interpretation: the hypersurfaces
of two diagonalizable DN systems of dimension n � 5 are Lie equivalent if
and only if the corresponding local Hamiltonian structures are related by a
canonical reciprocal transformation.

PACS number: 47.10.Df
Mathematics Subject Classification: 37K05, 37K25, 35F20, 35L60

1. Introduction

Systems of hydrodynamic type are quasilinear evolutionary hyperbolic PDEs of the form

ui
t =

n∑
k=1

vi
k(u)uk

x, u = (u1, . . . , un), ui
x = ∂ui

∂x
, ui

t = ∂ui

∂t
. (1)
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They naturally arise in applications such as gas dynamics, hydrodynamics, chemical
kinetics, the Whitham averaging procedure, differential geometry and topological field theory
[4, 7, 9, 21, 22]. Dubrovin and Novikov [7] showed that equation (1) is a local Hamiltonian
system (DN system) with Hamiltonian H [u] = ∫

h(u) dx, if there exists a flat non-degenerate
metric tensor g(u) in R

n with Christoffel symbols �i
jk(u), such that the matrix vi

k(u) can be
represented in the form

vi
k(u) =

n∑
k=1

(
gil(u)

∂2h

∂ul∂uk
(u) −

n∑
s=1

gik(u)�l
sk(u)

∂h

∂ul
(u)

)
. (2)

In this paper we shall consider DN systems which possess Riemann invariants, i.e. they may
be transformed to the diagonal form

ui
t = vi(u)ui

x, i = 1, . . . , n, (3)

with n � 3 and with vi(u) all real and distinct (strict hyperbolicity property). We also suppose
to work in the space of smooth and rapidly decreasing functions so that

(
d

dx

)−1
fx = f .

If n = 2, (1) can always be put in a diagonal form and are integrable by the hodograph
method. For arbitrary n, Tsarev [21] proved that a DN system as in (1) and (2) can be integrated
by a generalized hodograph method only if it may be transformed to the diagonal form. In the
latter case, moreover the flat metric is diagonal, the Hamiltonian satisfies

∂2h

∂ui∂uj
= �i

ij (u)
∂h

∂ui
+ �

j

ji(u)
∂h

∂uj
, (4)

and each solution to (4) generates a conserved quantity for the DN system (1), (2) and
all Hamiltonian flows generated by these conserved densities pairwise commute. As a
consequence, for n � 3, DN systems which possess Riemann invariants are always integrable.
We recall that there do also exist DN systems with an infinite number of conserved quantities
which do not possess Riemann invariants (see Ferapontov [11] for the classification of the
latter when n = 3).

Since a non-degenerate flat diagonal metric in R
n is associated with an orthogonal

coordinate system ui = ui(x1, . . . , xn), there is a natural link between diagonalizable
Hamiltonian systems and n-orthogonal curvilinear coordinates in flat spaces. Upon introducing
the Lamé coefficients, which in our case take the form

H 2
i (u) =

∑
k

(
∂xi

∂uk

)2

,

the metric tensor in the coordinate system ui is diagonal ds2 = ∑n
i=1 H 2

i (u)(dui)2, and the
zero curvature conditions Ril,im(u) = 0 (i �= l �= m �= i) and Ril,il(u) = 0 (i �= l) form an
overdetermined system:

∂2Hi

∂ul∂um
= 1

Hl

∂Hl

∂um

∂Hi

∂ul
+

1

Hm

∂Hm

∂ul

∂Hi

∂um
, (5)

∂

∂ul

∂Hi

Hl∂ul
+

∂

∂ui

∂Hl

Hi∂ui
+

∑
m�=i,l

1

H 2
m

∂Hi

∂um

∂Hl

∂um
= 0. (6)

Bianchi and Cartan showed that a general solution to the zero curvature equations (5) and (6)
can be parametrized locally by n(n − 1)/2 arbitrary functions of two variables. If the Lamé
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coefficients Hi(u) are known, one can find xi(u1, . . . , un) solving the linear overdetermined
problem (embedding equations)

∂2xi

∂uk∂ul
= �k

kl(u)
∂xi

∂uk
+ �l

lk(u)
∂xi

∂ul
,

∂2xi

∂(ul)2
=

∑
k

�k
ll(u)

∂xi

∂uk
. (7)

Comparison of equations (4) and (7) implies that the flat coordinates for the metric
gii(u) = (H i(u))2 are the Casimirs of the corresponding Hamiltonian operator. Finally,
Zakharov [24] showed that the dressing method may be used to determine the solutions to the
zero curvature equations up to Combescure transformations.

It then follows that the classification of flat diagonal metrics ds2 = gii(u)(dui)2

is an important preliminary step in the classification of integrable Hamiltonian systems
of hydrodynamic type. Best known examples of integrable Hamiltonian systems of
hydrodynamic type possess Riemann invariants, a pair of compatible flat metrics and have been
obtained in the framework of semisimple Frobenius manifolds (axiomatic theory of integrable
Hamiltonian systems) [4–6]; in the latter case, one of the flat metrics is also Egorov (i.e. its
rotation coefficients are symmetric).

Reciprocal transformations change the independent variables of a system and are an
important class of nonlocal transformations which act on hydrodynamic-type systems [1, 2,
12, 13, 19, 20, 23]. Reciprocal transformations map conservation laws to conservation
laws and map diagonalizable systems to diagonalizable systems, but act non-trivially on the
metrics and on the Hamiltonian structures: for instance, the flatness property and the Egorov
property for metrics as well as the locality of the Hamiltonian structure are not preserved,
in general, by such transformations. Then, it is natural to investigate under which additional
hypotheses the reciprocal system still possesses a local Hamiltonian structure, our ultimate
goal being the search for new examples of integrable Hamiltonian systems and the geometrical
characterization of the associated hypersurfaces.

Keeping this in mind, in the following we start from a smooth integrable Hamiltonian
system in Riemann invariant form

ui
t = vi(u)ui

x, i = 1, . . . , n, (8)

with smooth conservation laws

B(u)t = A(u)x, N(u)t = M(u)x (9)

with B(u)M(u) − A(u)N(u) �= 0. In the new independent variables x̂ and t̂ defined by

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt, (10)

the reciprocal system is still diagonal and takes the form

ui
t̂
= B(u)vi(u) − A(u)

M(u) − N(u)vi(u)
ui

x̂ = v̂i (u)ui
x̂ . (11)

Moreover, the metric of the initial systems gii(u) transforms to

ĝii (u) =
(

M(u) − N(u)vi(u)

B(u)M(u) − A(u)N(u)

)2

gii(u), (12)

and all conservation laws and commuting flows of the original system (8) may be recalculated
in the new independent variables.

If the reciprocal transformation is linear (i.e. A,B,N,M are constant functions), then
the reciprocal to a flat metric is still flat and locality and compatibility of the associated
Hamiltonian structures are preserved (see [19, 22, 23]).
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Under a general reciprocal transformation, the Hamiltonian structure does not behave
trivially and a thorough study of reciprocal Hamiltonian structures is still an open problem.
Ferapontov and Pavlov [13] constructed the reciprocal Riemannian curvature tensor and
the reciprocal Hamiltonian operator when the initial metric is flat, while in [2], we construct
the reciprocal Riemannian curvature tensor and the reciprocal Hamiltonian operator when the
initial metric is not flat and the initial system also possesses a flat metric.

The classification of the reciprocal Hamiltonian structures is also complicated by the fact
that a DN system as in (1) and (2) also possesses an infinite number of nonlocal Hamiltonian
structures [12, 15–17]. It is then possible that two DN systems are linked by a reciprocal
transformation and that the flat metrics of the first system are not reciprocal to the flat metrics
of the second. In [1], we constructed such an example: the genus one modulation (Whitham-
CH) equations associated with Camassa–Holm in Riemann invariant form (n = 3 in (8)). We
proved that the Whitham-CH equations are a DN system and possess a pair of compatible
flat metrics (none of the metrics is Egorov). We also proved the connection via a reciprocal
transformation of the Whitham-CH equations to the modulation equations associated with
the first negative flow of the Korteweg de Vries hierarchy (Whitham-KdV−1). In [1], finally
we also found the relation between the Poisson structures of the Whitham-KdV−1 and the
Whitham-CH equations: both systems possess a pair of compatible flat metrics, and the
two flat metrics of the first system are respectively reciprocal to the constant curvature and
conformally flat metrics of the second (and vice versa).

In view of the above results, in [2] we have started to classify the reciprocal transformations
which transform a DN system to another DN system, under the condition that the flat metric
tensor ĝ(u) of the transformed system is reciprocal to a metric tensor g(u) of the initial system,
which is either flat or of constant Riemannian curvature or conformally flat.

In [2], we give necessary and sufficient conditions so that a reciprocal transformation
which changes only one independent variable may preserve the flatness of the metric;
in particular, we show that the conservation laws in the reciprocal transformation of the
independent variable x (respectively t) are linear combinations of Casimirs and momentum
densities (respectively Casimirs and Hamiltonian densities).

For an easier comparison with the results known in the literature, we recall that Ferapontov
[12] took a reciprocal transformation where the conservation laws in (10) are a linear
combination of the Casimirs, momentum and Hamiltonian densities and gave the necessary
and sufficient conditions so that starting from a flat metric g(u), the reciprocal metric ĝ(u) is
either a flat or a constant curvature metric. Following Ferapontov [11, 12], we call canonical,
a reciprocal transformation in which the integrals in (10) are linear combinations of the
n + 2 canonical integrals (Casimirs, Hamiltonian and momentum) with respect to the given
Hamiltonian structure.

The results in [2, 12] suggest that canonical reciprocal transformations have a privileged
role in preserving locality of the Hamiltonian structure. In this paper, we show that canonical
transformations are indeed the only reciprocal transformations which may transform the initial
metric gii(u) into a reciprocal flat metric ĝii (u) when the dimension of the system is n � 3
(in the case of a transformation of a single independent variable) or n � 5 (in the case of a
transformation of both the independent variables).

First of all, in theorems 3.2 and 3.5, we give necessary conditions on the initial metric
gii(u) and on the conservation laws (9) in the reciprocal transformation, so that the reciprocal
metric (12) is flat. We suppose that the initial system (8) is a DN system which possesses
Riemann invariants and we let gii(u) be one of the metrics associated with it. Under such
hypotheses, we prove that if the reciprocal metric ĝii (u) in (12) is flat, then the reciprocal
transformation is canonical for the initial metric gii(u).

4
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Then, we restrict ourselves to the case in which the initial metric is either flat or of
constant curvature and, in theorem 4.1, we classify the reciprocal transformations of one or
both the independent variables so that the reciprocal metric is flat. Finally, when both the
initial and the transformed metrics are flat, we also discuss the geometric interpretation of the
latter theorem in view of the results obtained by Ferapontov in [11]. Indeed, in theorem 4.12,
we show that the hypersurfaces of two diagonalizable DN systems are Lie equivalent if and
only if the corresponding local Hamiltonian structures are related by a canonical reciprocal
transformation which satisfies theorem 4.1.

There are of course still many open problems connected to the classification of local
Hamiltonian structures: what about the possible role of other types of transformations among
hydrodynamic-type systems? What is the geometrical meaning of the conditions settled by
theorems 3.2, 3.5 and 4.1 when the initial metric is not flat? Moreover, there do exist non-
diagonalizable integrable Hamiltonian systems; it would be interesting to check whether the
same conditions on the conservation laws in the reciprocal transformations preserving the
locality of the Hamiltonian structure still hold also in that case.

Finally, several systems of evolutionary PDEs arising in physics may be written as
perturbations of hyperbolic systems of PDEs and their classification in the case of Hamiltonian
perturbations has recently been started by Dubrovin et al [10]. It would also be interesting to
investigate the role of reciprocal transformations in this perturbation scheme.

The plan of the paper is as follows. In the following section, we introduce the necessary
definitions and we recall some theorems we proved in [2] on the form of the reciprocal
Riemannian curvature tensor and of the reciprocal Hamiltonian operator. In section 3, we
prove the necessary conditions on the form of the Riemannian curvature tensor and the
conservation laws in the reciprocal transformation so that the reciprocal metric is flat. Finally,
in section 4, we classify the reciprocal transformation which preserve the flatness of the metric
or which transform a constant curvature metric to a flat one and we apply such conditions to
some examples.

2. The reciprocal Hamiltonian structure

In this section, we introduce some useful notations, we discuss the role of additive constants in
the extended reciprocal transformations and we recall some theorems we proved in [2] which
we shall use in the following sections.

We consider a smooth DN Hamiltonian hydrodynamic system in Riemann invariants

ui
t = vi(u)ui

x, i = 1, . . . , n, (13)

with vi(u) all real and distinct (strict hyperbolicity property). Let gii(u) be a (covariant)
non-degenerate diagonal metric such that for convenient f i(ui), i = 1, . . . , n, gii(u)f i(ui)

is a flat metric associated with the local Hamiltonian operator of the system (13). Let
gii(u) = 1/gii(u). Let Hi(u), βij (u) and �i

jk(u) respectively be the Lamé coefficients, the
rotation coefficients and the Christoffel symbol of a diagonal non-degenerate metric gii(u)

associated with (13),

Hi(u) =
√

gii(u), βij (u) = ∂iHj (u)

Hi(u)
, i �= j,

�i
jk(u) = 1

2
gim(u)

(
∂gmk(u)

∂uj
+

∂gmj (u)

∂uk
− ∂gkj (u)

∂um

)
.

5
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Since the metric is diagonal, the only nonzero Christoffel symbols are

�
j

ii(u) = − Hi(u)

H 2
j (u)

∂jHi(u), ∀ i �= j,

�i
ij (u) = ∂jHi(u)

Hi(u)
, ∀ i, j = 1, . . . , n.

Under our hypotheses, the system (13) possesses at least one flat metric. Then, for any other
metric associated with (13), the Euler–Darboux equations (6) still hold,

∂kβij (u) − βik(u)βkj (u) ≡ 0, i �= j �= k,

that is R
ij

ik(u) ≡ 0, (i �= j �= k �= i). For systems (13), Ferapontov [12] constructed the
nonlocal Hamiltonian operators J ij (u) associated with non-flat metrics gii(u) which take the
form

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+

∑
l

ε(l)wi
(l)(u)ui

x

(
d

dx

)−1

w
j

(l)(u)uj
x, (14)

where εl = ±1, wi
(l)(u) are affinors of the metric which satisfy

∂jw
i
(l)(u)

w
j

(l)(u) − wi
(l)(u)

= ∂jv
i(u)

vj (u) − vi(u)
= ∂j ln Hi(u), (15)

and the curvature tensor of the metric takes the form

Rik
ik (u) = − �ik(u)

Hi(u)Hk(u)
≡

∑
(l)

εlwi
(l)(u)wk

(l)(u), i �= k, (16)

where

�ik(u) = ∂iβik(u) + ∂kβki(u) +
∑

m�=i,k

βmi(u)βmk(u).

Remark 2.1. In particular, if gii(u) is flat, then J ij (u) = gii(u)
(
δi
j

d
dx

− �
j

ik(u)uk
x

)
[7]. If

gii(u) is of constant curvature c, then [17]

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+ cui

x

(
d

dx

)−1

uj
x. (17)

If gii(u) is conformally flat, then

R
ij

ij (u) = wi(u) + wj(u), i �= j (18)

and

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+ wi(u)ui

x

(
d

dx

)−1

uj
x + ui

x

(
d

dx

)−1

wj(u)uj
x. (19)

In the following section, a special role is played by the metrics gii(u) for which the Riemannian
curvature tensor takes the special form

Rik
ik (u) = wi

(1)(u) + wk
(1)(u) + wi

(2)(u)vk(u) + wk
(2)(u)vi(u), i �= k, (20)

and

J ij (u) = gii(u)

(
δi
j

d

dx
− �

j

ik(u)uk
x

)
+ wi

(1)(u)ui
x

(
d

dx

)−1

uj
x + ui

x

(
d

dx

)−1

w
j

(1)(u)uj
x

+ wi
(2)(u)ui

x

(
d

dx

)−1

vj (u)uj
x + vi(u)ui

x

(
d

dx

)−1

w
j

(2)(u)uj
x. (21)

6
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Given smooth conservation laws

B(u)t = A(u)x, N(u)t = M(u)x

for the system (13), a reciprocal transformation of the independent variables x, t is defined by
[20]

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt. (22)

In [13], Ferapontov and Pavlov have characterized the tensor of the reciprocal Riemannian
curvature and the reciprocal Hamiltonian structure when the initial metric gii(u) is flat. In [2],
we have computed the Riemannian curvature and the Hamiltonian structure of the reciprocal
system

ui
t̂
= v̂i (u)ui

x̂ = B(u)vi(u) − A(u)

M(u) − N(u)vi(u)
ui

x̂ , (23)

associated with the reciprocal metric

ĝii (u) =
(

M(u) − N(u)vi(u)

B(u)M(u) − A(u)N(u)

)2

gii(u), (24)

with gii(u) non-flat. In the following, we use the symbols Ĥ i(u), β̂ij (u), �̂i
jk(u), R̂

ij

km(u) and

Ĵ ij , respectively, for the Lamé coefficients, the rotation coefficients, the Christoffel symbols,
the Riemannian curvature tensor and the Hamiltonian operator associated with the reciprocal
metric ĝii (u). To simplify notations, we drop the u dependence in the lengthy formulae.

Theorem 2.2 [2]. Let gii(u) be the covariant diagonal metric as above for the Hamiltonian
system (13) with Riemannian curvature tensor as in (16) or as in (20). Then, for the
reciprocal metric ĝii (u) defined in (24), the only possible nonzero components of the reciprocal
Riemannian curvature tensor are

R̂ik
ik (u) = HiHk

Ĥ iĤ k

Rik
ik − (∇B)2 +

Hk

Ĥ k

∇k∇kB +
Hi

Ĥ i

∇ i∇iB − v̂kv̂i (∇N)2

+ v̂k Hi

Ĥ i

∇ i∇iN + v̂i Hk

Ĥ k

∇k∇kN − (v̂k + v̂i )〈∇B,∇N〉, i �= k (25)

where

〈∇B(u),∇N(u)〉 =
∑
m

gmm(u)∂mB(u)∂mN(u),

∇ i∇iB(u) = gii(u)

(
∂2
i B(u) −

∑
m

�m
ii (u)∂mB(u)

)
,

∇ i∇jB(u) = gii(u)
(
∂i∂jB(u) − �i

ij (u)∂iB(u) − �
j

ij (u)∂jB(u)
)
.

In [2], we computed the reciprocal affinors and the reciprocal Hamiltonian operator of
a hydrodynamic system (13) with (nonlocal) Hamiltonian operator (14). At this aim, we
introduce the auxiliary flows

ui
τ = ni(u)ui

x = J ij (u)∂jN(u), ui
ζ = bi(u)ui

x = J ij (u)∂jB(u),

ui
t(l)

= wi
(l)(u)ui

x = J ij (u)∂jH
(l)(u),

(26)

respectively, generated by the densities of conservation laws associated with the reciprocal
transformation (22), B(u), N(u), and by the densities of conservation laws H(l)(u) associated

7
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with the affinors wi
(l)(u) of the Riemannian curvature tensor (16). By construction, all the

auxiliary flows commute with (13). Introducing the following closed form⎧⎪⎨
⎪⎩

dx̂ = B(u) dx + A(u) dt + P(u) dτ + Q(u) dζ +
∑

l T
(l)(u) dt(l),

dt̂ = N(u) dx + M(u) dt + R(u) dτ + S(u) dζ +
∑

l Z
(l)(u) dt(l),

dτ̂ = dτ, dζ̂ = dζ, dt̂(l) = dt(l),

(27)

it is easy to verify that the reciprocal auxiliary flows

ui
τ̂ = n̂i(u)ui

x̂ , ui

ζ̂
= b̂

i
(u)ui

x̂ , ui
t̂ (l)

= ŵi
(l)(u)ui

x̂ ,

satisfy

n̂i(u) = niB − P + (Nni − R)v̂i = Hi

Ĥ i

ni − P − v̂iR,

b̂
i
(u) = biB − Q + (Nbi − S)v̂i = Hi

Ĥ i

bi − Q − v̂iS, (28)

ŵi
(l)(u) = wi

(l)B − T (l) +
(
Nwi

(l) − Z(l)
)
v̂i = Hi

Ĥ i

wi
(l) − T (l) − v̂iZ(l).

Using (27), we immediately conclude that T (l)(u), Z(l)(u) satisfy

ni(u) = ∇ i∇iN +
∑
(l)

ε(l)Z
(l)wi

(l), bi(u) = ∇ i∇iB +
∑
(l)

ε(l)T
(l)wi

(l). (29)

Moreover, we have

vi(u) = ∂iA(u)

∂iB(u)
= ∂iM(u)

∂iN(u)
, wi

(l)(u) = ∂iT
(l)(u)

∂iB(u)
= ∂iZ

(l)(u)

∂iN(u)
,

bi(u) = ∂iQ(u)

∂iB(u)
= ∂iS(u)

∂iN(u)
, ni(u) = ∂iP (u)

∂iB(u)
= ∂iR(u)

∂iN(u)
.

(30)

Using (29) and (30), Q(u), R(u) and P(u) + S(u) are uniquely defined (up to additive
constants) by the following identities:

Q(u) = 1

2
(∇B)2 +

1

2

∑
l

ε(l)(T
(l))2, R(u) = 1

2
(∇N)2 +

1

2

∑
l

ε(l)(Z
(l))2,

P (u) + S(u) = 〈∇N,∇B〉 +
∑

l

ε(l)T
(l)Z(l).

(31)

If the Riemannian curvature tensor associated with gii(u) takes the special form (20), then
(29) take the special form

ni(u) = ∇ i∇iN + wi
(1)N + Z(1) + wi

(2)M + viZ(2),

bi(u) = ∇ i∇iB + wi
(1)B + T (1) + wi

(2)A + viT (2),
(32)

and

Q(u) = 1
2 (∇B)2(u) + B(u)T (1)(u) + A(u)T (2)(u),

R(u) = 1
2 (∇N)2(u) + N(u)Z(1)(u) + M(u)Z(2)(u),

P (u) + S(u) = 〈∇N,∇B〉 + T (1)N + T (2)M + Z(1)B + Z(2)A.

(33)

Remark 2.3. The addition of constants to the rhs of (31) leave invariant the reciprocal
transformation in the sense that the reciprocal metric ĝii (u), the reciprocal Riemannian tensor
R̂

ij

ij (u), the reciprocal Hamiltonian operator Ĵ ij (u) and the reciprocal Hamiltonian velocity

8
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flow v̂i (u) are not effected by them. These constants just effect the auxiliary flows. Indeed,
let Q(u), P (u), R(u) and S(u) be as in (31) and let us consider the modified closed form⎧⎪⎨
⎪⎩

dx̂ = B(u) dx + A(u) dt + (P (u) + α) dτ + (Q(u) + β) dζ +
∑

l T
(l)(u) dt(l),

dt̂ = N(u) dx + M(u) dt + (R(u) + γ ) dτ + (S(u) + δ) dζ +
∑

l Z
(l)(u) dt(l),

dτ̂ = dτ, dζ̂ = dζ,

with α, β, γ, δ arbitrary constants

n̂i
m(u) = n̂i(u) − β − δv̂i(u), b̂

i

m(u) = b̂
i
(u) − α − γ v̂i(u),

with n̂i(u) and b̂
i
(u) as in(28).

The following alternative expressions for the reciprocal Riemann curvature tensor and the
reciprocal Hamiltonian structure hold.

Theorem 2.4. Let gii(u) be the metric for the Hamiltonian hydrodynamic system (13), with
Riemannian curvature tensor as in (16). Then, after the reciprocal transformation (22), the
nonzero components of the reciprocal Riemannian curvature tensor are

R̂ik
ik (u) =

∑
l

ε(l)ŵi
(l)(u)ŵk

(l)(u) + v̂i (u)n̂k(u) + v̂k(u)n̂i(u) + b̂
i
(u) + b̂

k
(u), i �= k, (34)

where the reciprocal metric ĝii (u) and the reciprocal affinors n̂i(u), b̂
i
(u) and ŵi

(l)(u) are as
in (24) and (28), respectively, with Q(u), P (u), R(u) and S(u) as in (31).

Let gii(u) be the metric for the Hamiltonian hydrodynamic system (13), with a Riemannian
curvature tensor as in (20), then the nonzero components of the transformed curvature tensor
take the form

R̂ik
ik (u) = n̂i(u)v̂k(u) + n̂k(u)v̂i(u) + b̂

i
(u) + b̂

k
(u), i �= k, (35)

where the reciprocal metric ĝii (u) and the reciprocal affinors n̂i(u), b̂
i
(u) and ŵi

(l)(u) are as
in (24) and (28), respectively, with Q(u), P (u), R(u) and S(u) as in (33).

Formula (34) has already been proven in [2]. To prove (35), it is sufficient to insert (32)
and (33) into (25).

Corollary 2.5. Let the reciprocal transformation change only x (N(u) = 0 and M(u) = 1 in
(22)), then the nonzero components of the transformed curvature tensor take the form

R̂ik
ik (u) = B2(u)Rik

ik (u) + B(u)(∇ i∇iB(u) + ∇k∇kB(u)) − (∇B(u))2. (36)

Moreover, if the Riemannian curvature tensor of gii(u) takes the form as in (16), then

R̂ik
ik (u) =

∑
l

ε(l)ŵi
(l)(u)ŵk

(l)(u) + b̂
i
(u) + b̂

k
(u),

if the Riemannian curvature tensor associated with gii(u) takes the form (20) then the nonzero
components of the transformed curvature tensor take the form

R̂ik
ik (u) = ŵi

(2)(u)v̂k
(l)(u) + ŵk

(2)(u)v̂i
(l)(u) + b̂

i
(u) + b̂

k
(u). (37)

If the reciprocal transformation changes only t (B(u) = 1 and A(u) = 0 in (22)), then
the nonzero components of the transformed curvature tensor satisfy

R̂ik
ik (u) = M2Rik

ik + M(vk∇ i∇iN + vi∇k∇kN) − vivk(∇N)2

(M − Nvi)(M − Nvk)
. (38)

9
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Moreover, if the Riemannian curvature tensor of gii(u) takes the form as in (16), then

R̂ik
ik (u) =

∑
l

ε(l)ŵi
(l)(u)ŵk

(l)(u) + v̂i (u)n̂k(u) + v̂k(u)n̂i(u),

if the Riemannian curvature tensor associated with gii(u) takes the form (20), then the nonzero
components of the transformed curvature tensor take the form

R̂ik
ik (u) = ŵi

(1)(u) + ŵk
(1)(u) + v̂i (u)n̂k(u) + v̂k(u)n̂i(u). (39)

Formulae (36), (38) and their expressions when Rik
ik (u) is as in (16) have already been

proven in [2]. To prove (37) (respectively (39)) it is sufficient to insert (32) and (33) into (36)
(respectively (38)).

3. Necessary conditions for reciprocal flat metrics

In this section, we start from an integrable Hamiltonian system ui
t = vi(u)ui

x, i = 1, . . . , n

and we investigate the necessary conditions on the initial metric and on the conservation laws
in the reciprocal transformation so that the reciprocal metric is flat. The conditions settled by
theorem 3.5 on the conservation laws in the reciprocal transformations are very strict: if n � 5,
they must be linear combinations with constant coefficients of the Casimirs, the momentum
and the Hamiltonian densities with respect to the initial Hamiltonian structure. The same
theorem settles also very strict conditions on the admissible form of the Riemannian curvature
tensor associated with the initial metric gii(u). In the case of reciprocal transformations of a
single independent variable the necessary conditions are even more restrictive: if n � 3, the
conservation law is a linear combination of Casimirs and momentum densities (respectively of
Casimirs and Hamiltonian densities) if just the x variable (respectively the t variable) changes.

Definition 3.1. Following Ferapontov [11, 12], we call canonical, a reciprocal transformation
as in (22), in which the integrals, up to additive constants, are linear combinations of
the canonical integrals (Casimirs, Hamiltonian and momentum) with respect to the given
Hamiltonian structure.

Remark 3.1. If the initial metric gii(u) is not flat, a Casimir density (respectively a momentum
density, a Hamiltonian density) associated with the corresponding nonlocal Hamiltonian
operator J ij (u) in (14) is a conservation law h(u) such that J ij ∂jh(u) ≡ 0 (respectively
J ij ∂jh(u) ≡ ui

x, J
ij ∂jh(u) ≡ vi(u)ui

x). We remark that, under the hypotheses of the
following theorem, for each Hamiltonian structure with k nonlocalities in the Hamiltonian
operator, there do exist (n + k + 2) canonical integrals as proven by Maltsev and Novikov [18].

In the following theorem, we settle the necessary conditions for reciprocal flat metrics in
the case of a transformation of a single variable.

Theorem 3.2. Let ui
t = vi(u)ui

x, i = 1, . . . , n, n � 3, be an integrable strictly hyperbolic
DN hydrodynamic-type system as in (13), let gii(u) be one of its metrics with Hamiltonian
operator J ij (u) as in (14).

(i) Let dx̂ = B(u) dx + A(u) dt, dt̂ = dt , be a reciprocal transformation such that the
reciprocal metric ĝii (u) defined in (24) is flat.

Then B(u) is a linear combination of the Casimirs and the momentum densities (up to
an additive constant), and gii(u) is either a flat or a constant curvature or a conformally
flat metric.

10
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(ii) Let dx̂ = dx, dt̂ = N(u) dx + M(u) dt , be a reciprocal transformation such that
the reciprocal metric ĝii (u) defined in (24) is flat. In the case n = 3, let moreover
vi(u) �≡ 0, i = 1, . . . , 3.

Then N(u) is a linear combination of the Casimirs and the Hamiltonian densities (up to
an additive constant), and the Riemannian curvature tensor associated with the initial metric
gii(u) takes the form

R
ij

ij (u) = wi(u)vj (u) + wj(u)vi(u), i �= j, (40)

with wi(u) (possibly null) affinors.

Proof. To compute the form of the Riemannian curvature tensor associated with the
initial metric gii(u) it is sufficient to invert the reciprocal transformation (42) and to apply
theorem 2.4 to the reciprocal flat metric ĝii (u).

(i) If the reciprocal transformation changes only x (N(u) ≡ 0,M(u) ≡ 1) and the reciprocal
metric ĝii (u) is flat, the Riemann curvature tensor associated with the initial metric gii(u)

takes the form Rik
ik (u) = wi

(1)(u) + wk
(1)(u) (i �= k), with possibly constant or null

affinors wi
(1)(u) (see [13]). According to corollary (2.5), the zero curvature equations

R̂ik
ik (u) = b̂

i
(u) + b̂

k
(u) ≡ 0 (i �= k), for the reciprocal metric ĝii (u) are then equivalent

to

0 ≡ b̂
i
(u) = B(u)bi(u) − Q(u), i = 1, . . . , n,

as follows from (37) with Q(u) as in (33). Since bi(u) = ∂iQ(u)

∂iB(u)
(i = 1, . . . , n), we

immediately conclude that there exists a constant κ such that

ui

ζ̂
≡ bi(u)ui

x ≡ J ij (u)∂jB(u) = κui
x, i = 1, . . . , n,

that is B(u) is a linear combination of the Casimirs and the momentum densities up to an
additive constant.

(ii) Similarly, if the reciprocal transformation changes only t (B(u) ≡ 1, A(u) ≡ 0) and
the reciprocal metric ĝii (u) is flat, the Riemann curvature tensor associated with the
initial metric gii(u) takes the form Rik

ik (u) = wi
(2)(u)vk(u) + wk

(2)(u)vi(u), (i �= k), with
possibly constant or null affinors wi

(2)(u) (see [13]). According to corollary (2.5), the

zero curvature equations for the reciprocal metric, R̂ik
ik (u) = v̂i (u)n̂k(u) + v̂k(u)n̂i(u) ≡

0, (i �= k), are equivalent to

0 ≡ n̂i(u) = M(u)ni(u) − R(u)vi(u)

M(u) − N(u)vi(u)
, i = 1, . . . , n. (41)

Since vi(u) = ∂iM(u)

∂iN(u)
, ni(u) = ∂iR(u)

∂iN(u)
, (i = 1, . . . , n), we immediately conclude that

there exists a constant κ such that

ui
τ̂ ≡ ni(u)ui

x ≡ J ij (u)∂jN(u) = κvi(u)ui
x, i = 1, . . . , n,

that is the density of conservation law associated with the inverse transformation is
a linear combination of the Casimirs and the Hamiltonian densities up to an additive
constant. �

Remark 3.3. Theorem 3.2 is not applicable in the case n = 2. For instance, in the case of a

transformation of the single variable x, we get the zero curvature condition b̂
1
(u) = −b̂

2
(u)

and it is possible to construct non-canonical reciprocal transformations which preserve the

11
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flatness of the metric. Here is a counterexample suggested by the second referee: let us take
a linear two-component system

u1
t = pu1

x, u2
t = qu2

x,

where p, q are constants. It has infinitely many Hamiltonian structures, let us take the one
corresponding to the metric g = (du1)2 + (du2)2. Let us consider a reciprocal transformation
of x only, dx̂ = B(u1, u2) dx + A(u1, u2) dt, t̂ = t . For the above system, the general form
of a density of conservation law is B(u1, u2) = f 1(u1) + f 2(u2). Let us require that the
transformed metric be flat: this gives a functional–differential equation for f 1 and f 2 which
can be solved explicitly.

In particular, if B(u1, u2) = a + bu1 + cu2 + d
2 ((u1)2 + (u2)2), then the flatness condition

gives b2 +c2 = 2ad. This is the case of canonical integrals discussed in theorem 3.2. However,
there is another solution:

B(u1, u2) = a exp(u1) + b exp(−u1) + c sin(u2) + d cos(u2)

with c2 + d2 = 4ab. Thus, the reciprocal metric is flat, although the density B is not a linear
combination of canonical integrals.

Remark 3.4. In the case of time transformations and n = 3, the hypothesis vi(u) �≡ 0 ensures
v̂i (u) �≡ 0. If n = 3 and v3(u) = 0, then theorem 3.2 is not applicable for transformations
of the independent variable t. Indeed, the zero curvature equations for the transformed metric
take the form

v̂3(u) = 0, n̂3(u) = 0, n̂2(u)v̂1(u) + n̂1(u)v̂2(u) ≡ 0,

instead of (41). The condition n̂3(u) ≡ 0 implies n3(u) ≡ 0, but we cannot conclude that
n̂1(u) = 0 = n̂2(u) and in general we may get a transformed flat metric with non-canonical
transformations. Indeed, let

u1
t = 2u1

x, u2
t = u2

x, u3
t = 0.

The above system is integrable and possesses a local Hamiltonian structure associated
with the flat metric g = (du1)2 + (du2)2 + (du3)2. Let the reciprocal transformation be
dx̂ = dx, dt̂ = N(u) dx + M(u) dt , with

N(u) = exp(u1) + exp(−u1) + 2
√

2 cos

(
u2

2

)
+ 2 sin

(
u2

2

)
+ u3,

M(u) = exp(u1) + exp(−u1) + 4
√

2 cos

(
u2

2

)
+ 4 sin

(
u2

2

)
.

Then the zero curvature equations for the transformed metric ĝii (u) are identically satisfied
and

n1(u) = exp(u1) + exp(−u1), n2(u) = −
√

2

2
cos

(
u2

2

)
− 1

2
sin

(
u2

2

)
, n3(u) = 0.

In the following theorem, we settle the necessary conditions for reciprocal flat metrics in
the case of a reciprocal transformation of both the independent variables.

Theorem 3.5. Let ui
t = vi(u)ui

x, i = 1, . . . , n, n � 5, be an integrable strictly hyperbolic
DN hydrodynamic-type system as in (13), let gii(u) be one of its metrics with Hamiltonian
operator J ij (u) as in (14). Let

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt, (42)

be a reciprocal transformation such that the reciprocal metric ĝii (u) defined in (24) is flat.
Then

12



J. Phys. A: Math. Theor. 42 (2009) 095208 S Abenda

(i) There exist (possibly null) affinors wi
(l)(u), i = 1, . . . , n, l = 1, 2, such that the

Riemannian curvature tensor of the initial metric gii(u) takes the form

R
ij

ij (u) = wi
(1)(u) + w

j

(1)(u) + wi
(2)(u)vj (u) + w

j

(2)(u)vi(u), i �= j. (43)

(ii) The reciprocal transformation (42) is canonical with respect to J ij (u), the Hamiltonian
operator associated with the initial metric gii(u). In particular, the auxiliary flows

ui
ζ = bi(u)ui

x = J ij (u)∂jB(u), ui
τ = ni(u)ui

x = J ij (u)∂jN(u),

associated with such transformations are linear combinations of the x and t flows.

Proof. To verify property (i) it is sufficient to invert the reciprocal transformation (42) and to
apply theorem 2.4 to the reciprocal flat metric ĝii (u).

We now prove statement (ii) in the case of a general reciprocal transformation (42) and
let the initial metric gii(u) have Riemann curvature tensor as in (43).

Let n = 5. The zero curvature equations associated with the reciprocal flat metric ĝii (u)

are

b̂
i
(u) + b̂

j
(u) + n̂i(u)v̂j (u) + n̂j (u)v̂i(u) = 0, i �= j.

Using the strict hyperbolicity hypothesis, it is elementary to show that they may be equivalently
expressed as

b̂
i
(u) = −n̂1(u)v̂i(u), n̂i(u) = n̂1(u), i = 1, . . . , 5.

For n � 5, it is also easy to prove by induction that the system of zero curvature equations in

the 2n variables b̂
i
(u), n̂i(u) has rank 2n − 1 and that

b̂
i
(u) = −n̂1(u)v̂i(u), n̂i(u) = n̂1(u), i = 1, . . . , n. (44)

Since n̂j (u) are affinors of the transformed metric ĝii (u), using (15) for the transformed
metric and (44), we have ∂kn̂

j (u) ≡ 0, k �= j . Using again (44), we then conclude that there
exists a (possibly null) constant κ0 such that

b̂
i
(u) = −κ0v̂

i (u), n̂i(u) = κ0, i = 1, . . . , n. (45)

For the inverse reciprocal transformation, we have

dx = B̂(u) dx̂ + Â(u) dt̂ + Q̂(u) dζ̂ + P̂ (u) dτ̂ ,

dt = N̂(u) dx̂ + M̂(u) dt̂ + Ŝ(u) dζ̂ + R̂(u) dτ̂ , ζ = ζ̂ , τ = τ̂ ,

with

B̂(u) = M(u)

B(u)M(u) − A(u)N(u)
, Â(u) = − A(u)

B(u)M(u) − A(u)N(u)
,

N̂(u) = − N(u)

B(u)M(u) − A(u)N(u)
, M̂(u) = B(u)

B(u)M(u) − A(u)N(u)
,

Q̂(u) = S(u)A(u) − Q(u)M(u)

B(u)M(u) − A(u)N(u)
, Ŝ(u) = Q(u)N(u) − S(u)B(u)

B(u)M(u) − A(u)N(u)
,

P̂ (u) = R(u)A(u) − P(u)M(u)

B(u)M(u) − A(u)N(u)
, R̂(u) = P(u)N(u) − R(u)B(u)

B(u)M(u) − A(u)N(u)
.

(46)

Since

v̂i (u) = B(u)vi(u) − A(u)

M(u) − N(u)vi(u)
= ∂iÂ(u)

∂iB̂(u)
= ∂iM̂(u)

∂iN̂(u)
, i = 1, . . . , n,

13
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and the reciprocal affinors satisfy (i = 1, . . . , n)

n̂i(u) = B(u)ni(u) − P(u) + (N(u)ni(u) − R(u))v̂i(u) = ∂iP̂ (u)

∂iB̂(u)
= ∂iR̂(u)

∂iN̂(u)
,

b̂
i
(u) = B(u)ni(u) − Q(u) + (N(u)ni(u) − S(u))v̂i(u) = ∂iQ̂(u)

∂iB̂(u)
= ∂i Ŝ(u)

∂iN̂(u)
,

we immediately conclude that there exist constants κ1, . . . , κ4 such that

Ŝ(u) = −κ0M̂(u) − κ1, Q̂(u) = −κ0Â(u) − κ2,

R̂(u) = κ0N̂(u) − κ3, P̂ (u) = κ0B̂(u) − κ4.

Inserting (46) into the above equations, we then get

Q(u) = κ2B(u) + κ1A(u), S(u) = κ2N(u) + κ1M(u) + κ0,

P (u) = κ4B(u) + κ3A(u) − κ0, R(u) = κ4N(u) + κ3M(u),

from which the assertion follows. �

Remark 3.6. If n = 4, the system of the six zero curvature equations for the transformed

metric ĝii (u) has maximal rank 6 in the unknowns b̂
i
, n̂i , and it is possible to express,

say b̂
i
(u), n̂i(u), i = 2, 3, 4 in function of b̂

1
(u) and n̂1(u). Moreover the condition

n̂i(u) = n̂1(u), i = 2, 3, 4 is satisfied if and only if b̂
1
(u) = −v̂1(u)n̂1(u).

The above observation implies that, for n = 4, there exist non-canonical transformations
which preserve the flatness of the metric when n̂i(u) �= n̂1(u) for i ∈ {2, 3, 4}.

4. Classification of the reciprocal transformations which preserve the flatness of the

metric or transform constant curvature metrics to flat metrics

Theorems 3.2 and 3.5 state that only the reciprocal transformations which are canonical
with respect to the initial Hamiltonian structure may transform the initial metric to a flat
one, respectively for n � 3 (reciprocal transformations of a single independent variable)
or n � 5 (reciprocal transformations of both the independent variables). In view of the
above, in this section we restrict ourselves to the case in which the initial metric gii(u) is
either flat (wi

(1) ≡ 0 ≡ wi
(2), i = 1, . . . , n, in (43)) or of constant curvature 2c (wi

(1) ≡ c,

wi
(2) ≡ 0, i = 1, . . . , n, in (43)). Then, in theorem 4.1, we completely characterize which

reciprocal transformations map gii(u) to flat metric ĝii (u).
Finally, the case in which both the initial and the transformed Hamiltonian structure are

local has also a nice geometric interpretation in view of the results by Ferapontov [11], which
we present in theorem 4.12.

Theorem 4.1. Let n � 5 and let ui
t = vi(u)ui

x = J ij (u)∂jH(u), i = 1, . . . , n,
be a DN integrable strictly hyperbolic hydrodynamic-type system, with J ij (u) being the
Hamiltonian operator associated with the metric gii(u) and H(u) the Hamiltonian density.
Let dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx + M(u) dt be a reciprocal transformation with
A(u), B(u),M(u) and N(u) not all constant functions.

(A) Let the metric gii(u) be flat. Then the reciprocal metric ĝii (u) defined in (24) is flat if
and only if one of the following alternatives hold:

(A.1) there exist constants κ1 �= 0, κ2, κ3 such that

M(u) = κ1, N(u) = κ2, (∇B)2(u) = κ3 (κ1B(u) − κ2A(u)) ;

14
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(A.2) there exist constants κ1 �= 0, κ2, κ3 such that

B(u) = κ1, A(u) = κ2, (∇N)2(u) = κ3 (κ1M(u) − κ2N(u)) ;
(A.3) there exist constants κ1, κ2, κ3, κ4 such that

(∇B)2(u) = 2κ1A(u) + 2κ2B(u), (∇N)2(u) = 2κ3M(u) + 2κ4N(u),

〈∇B(u),∇N(u)〉 = κ1M(u) + κ2N(u) + κ3A(u) + κ4B(u).

(B) Let the metric gii(u) be of constant curvature 2c. Then the reciprocal metric ĝii (u)

defined in (24) is flat if and only if one of the following alternatives hold:

(B.1) there exist constants κ1 �= 0, κ3, such that

M(u) = κ1, N(u) ≡ 0, (∇B)2(u) + 2cB2(u) = 2κ3B(u);
(B.2) there exist constants κ1, κ2, κ3, κ4 such that

(∇B)2(u) + 2cB2(u) = 2κ1A(u) + 2κ2B(u),

(∇N)2(u) + 2cN2(u) = 2κ3M(u) + 2κ4N(u),

〈∇B(u),∇N(u)〉 + 2cB(u)N(u) = κ1N(u) + κ2M(u) + κ3A(u) + κ4B(u).

Remark 4.2. Case (A.i) (respectively (A.ii)) includes the reciprocal transformations of the
single variable x (respectively the single variable t) when κ1 = 1, κ2 = 0.

Case (B.i) corresponds to reciprocal transformations of the single variable x (note that
only N(u) ≡ 0 is admissible if c �= 0). Finally, it is not possible to transform a constant
curvature metric to a flat one by a transformation of the single variable t.

Proof. Let gii(u) be either a flat (c = 0) or a constant curvature metric (c �= 0).
We prove first (A.i) and (B.i). Let κ1 �= 0, κ2 be constants such that

M(u) ≡ κ1, N(u) ≡ κ2.

Then, the only possibly nonzero elements of the reciprocal Riemannian curvature tensor take
the form

R̂ik
ik (u) = 2c

Hi(u)Hk(u)

Ĥ i(u)Ĥ k(u)
− (∇B)2(u) +

Hi(u)

Ĥ i(u)
∇ i∇iB(u) +

Hk(u)

Ĥ k(u)
∇k∇kB(u),

where

Ĥ i(u) = κ1 − κ2v
i(u)

B(u)κ1 − A(u)κ2
Hi(u), v̂i(u) = B(u)vi(u) − A(u)

κ1 − κ2vi(u)
, i = 1, . . . , n.

From the necessary condition found in theorems 3.2 and 3.5,

bi(u) ≡ ∇ i∇iB(u) + 2cB(u) = κ3 + κ4v
i(u), i = 1, . . . , n, (47)

we infer

(∇B)2(u) + 2cB2(u) = 2κ3B(u) + 2κ4A(u) + κ5. (48)

If we insert (47) and (48) inside the expression of the transformed Riemannian curvature
tensor, we immediately get

R̂ik
ik (u) = −κ5 + (κ1κ4 + κ3κ2)(v̂

i(u) + v̂k(u)) + 2cκ2
2 v̂i (u)v̂k(u).

Then the condition R̂ik
ik (u) ≡ 0, is equivalent to either

c = κ5 = κ1κ4 + κ3κ2 = 0,

or to

c �= 0, and κ5 = κ2 = κ4 = 0,

from which cases (A.i) and (B.i) immediately follow.
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We now prove (A.ii). Let κ1 �= 0, κ2 be constants such that B(u) ≡ κ1, A(u) ≡ κ2 and
let the initial metric gii(u) be flat. Then, the only possibly nonzero elements of the reciprocal
Riemannian curvature tensor take the form,

R̂ik
ik (u) = Hi(u)

Ĥ
i
(u)

∇ i∇iN(u)v̂k(u) +
Hk(u)

Ĥ
k
(u)

∇k∇kN(u)v̂i(u) − v̂i (u)v̂k(u) (∇N)2 (u),

i �= k.

Inserting into the above equation (i = 1, . . . , n)

Ĥ i(u) = M(u) − N(u)vi(u)

κ1M(u) − κ2(u)N(u)
Hi(u), v̂i(u) = κ1v

i(u) − κ2

M(u) − N(u)vi(u)
,

we get

R̂ik
ik (u) = v̂i (u)v̂k(u)

(
(κ1M(u) − κ2N(u)ni(u)

κ1vi(u) − κ2
+

(κ1M(u) − κ2N(u)nk(u)

κ1vk(u) − κ2
− (∇N)2

)
.

Since v̂i (u) �≡ 0, the conditions R̂ik(u) ≡ 0, (i �= k) are equivalent to either (∇N)2(u) ≡ 0
or

∂i (∇N)2 (u)

(∇N)2 (u)
= ∂i (κ1M(u) − κ2N(u))

(κ1M(u) − κ2N(u))
, i = 1, . . . , n,

from which case (A.ii) immediately follows. In particular, under the same hypotheses, we
also have

ni(u) = κ3(κ1v
i(u) + κ2),

n̂i(u) = −1

2
(∇N)2 (u)v̂i(u) + ni(u)

κ1M(u) − κ2N(u)

M(u − N(u)vi(u)
≡ 0.

If κ1 �= 0, κ2 are constants such that B(u) ≡ κ1, A(u) ≡ κ2 and the initial metric gii(u) is of
constant curvature c �= 0, then it is easy to show that the transformed metric ĝii cannot be flat.

To prove (A.iii) and (B.ii), we use the closed form⎧⎪⎨
⎪⎩

dx̂ = B(u) dx + A(u) dt + P(u) dτ + Q(u) dζ,

dt̂ = N(u) dx + M(u) dt + R(u) dτ + S(u) dζ,

dτ̂ = dτ, dζ̂ = dζ,

(49)

associated with the auxiliary flows

ui
τ = ni(u)ui

x = (∇ i∇iN(u) + 2cN(u))ui
x,

ui
ζ = bi(u)ui

x = (∇ i∇iB(u) + 2cB(u))ui
x.

(50)

In view of the results of the previous section, the auxiliary flows (50) are necessarily linear
combinations of the x and t flows. We impose that the conservation laws in the reciprocal
transformation satisfy the necessary conditions settled in theorem 3.5. Then there exist
constants κj , j = 1, . . . , 8 such that

bi(u) = κ1v
i(u) + κ2, (∇B)2(u) + 2cB(u) = 2κ1A(u) + 2κ2B(u) + 2κ6,

ni(u) = κ3v
i(u) + κ4, (∇N)2 (u) + 2cN(u) = 2κ3M(u) + 2κ4N(u) + 2κ5,

P (u) = κ3A(u) + κ4B(u) + κ7, S(u) = κ1M(u) + κ2N(u) + κ8,

〈∇B,∇N〉 + 2cBN ≡ P + S = κ1M(u) + κ2N(u) + κ3A(u) + κ4B(u) + κ7 + κ8.

If we insert the above expressions into the right-hand side of (28) we get

n̂i(u) = −κ7 − κ5v̂
i (u), b̂

i
(u) = −κ6 − κ8v̂

i (u).
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Finally, the elements of the Riemannian curvature tensor are

R̂ik
ik (u) = n̂i(u)v̂i(u) + n̂k(u)v̂k(u) + b̂

i
(u) + b̂

k
(u)

= −2κ6 − (κ7 + κ8)(v̂
i(u) + v̂k(u)) − 2κ5v̂

i (u)v̂k(u), i �= k,

so that R̂ik
ik (u) ≡ 0 if and only if κ5 = κ6 = κ7 +κ8 = 0, and assertions (A.iii) and (B.ii) easily

follow. �

Example 4.3. If B(u) and N(u) are non-trivial independent Casimirs of the flat metric
gii(u) and (∇B(u))2 �= 0, then there exist a constant α and A(u) such that, under
the reciprocal transformation dx̂ = (αB(u) + N(u)) dx + A(u) dt , the reciprocal metric
ĝii (u) = gii(u)/(αB(u) + N(u))2 is flat.

Example 4.4. If B(u) is a density of momentum for the flat metric gii(u) and (∇B(u))2 −
2B(u) = 2α, then under the reciprocal transformation dx̂ = (B(u) + α) dx + A(u) dt , the
reciprocal metric ĝii (u) = gii(u)/(B(u) + α)2 is flat.

Example 4.5. If B(u) and N(u) are non-trivial independent Casimirs of the flat metric gii(u)

and (∇N(u))2 �= 0, then there exist a constant α and M(u) such that, under the reciprocal
transformation dt̂ = (αN(u) + B(u)) dx + M(u) dt , the reciprocal metric ĝii (u) is flat.

Example 4.6. If N(u) is a density of Hamiltonian for the flat metric gii(u) and (∇N(u))2 −
2M(u) = 2α, then under the reciprocal transformation dt̂ = N(u)dx + (M(u) + α) dt , the
reciprocal metric ĝii (u) is flat.

Example 4.7. Let N(u) be a density of momentum and let B(u) be a density of Hamiltonian
for the flat metric gii(u). Then under the reciprocal transformation

dx̂ = B(u) dx + 1
2 (∇B)2(u) dt, dt̂ = N(u) dx + M(u) dt,

such that (∇N)2(u) = 2N(u), 〈∇N(u),∇B(u)〉 = N(u) + B(u), the reciprocal metric
ĝii (u) is flat.

Example 4.8. Let N(u) = M(u) = 1 and let B(u) be a density of Hamiltonian for the flat
metric gii(u). Then under the reciprocal transformation

dx̂ = B(u) dx + 1
2 (∇B)2(u) dt, dt̂ = dx + dt,

the reciprocal metric ĝii (u) is flat.

Example 4.9. Let N(u) be a density of momentum and let B(u) be a density of Hamiltonian
for the metric gii(u) with constant curvature 2c. Then under the reciprocal transformation

dx̂ = B(u) dx +
(

1
2 (∇B)2(u) + cB2(u)

)
dt, dt̂ = N(u) dx + M(u) dt,

such that (∇N)2(u) + 2cN2(u) − 2N(u) ≡ 0, 〈∇N(u),∇B(u)〉 + 2cN(u)B(u) − N(u) −
B(u) ≡ 0, the reciprocal metric ĝii (u) is flat.

Example 4.10. Let N(u) be a density of Hamiltonian and let B(u) be a Casimir for the metric
gii(u) with constant curvature 2c. Then under the reciprocal transformation

dx̂ = B(u) dx + A(u) dt, dt̂ = N(u) dx +
(

1
2 (∇N)2(u) + cN2(u)

)
dt,

such that (∇B)2(u) + 2cB2(u) ≡ 0, 〈∇N(u),∇B(u)〉 + 2cN(u)B(u) − B(u) ≡ 0, the
reciprocal metric ĝii (u) is flat.
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4.1. Reciprocal transformations which preserve the flatness property of the metric and
Lie-equivalent systems

We end the paper giving the geometrical interpretation of theorem 4.1 in the case in which both
the initial and the transformed metrics are flat. Indeed, local Hamiltonian systems connected
by canonical reciprocal transformations have nice geometrical properties as first observed
by Ferapontov [11]. Using the theorems proven by Ferapontov in [11] and theorem 4.1, in
theorem 4.12 we show that the local Hamiltonian structures of two DN Hamiltonian systems
in Riemann invariants are connected by a canonical reciprocal transformation if and only if
the associated hypersurfaces are Lie equivalent.

A DN hydrodynamic-type system as in (1) in flat coordinates takes the form

ui
t = vi

j (u)ui
x = εiδij d

dx

(
δH

δuj

)
, (51)

with εi = ±1 and the Hamiltonian H = ∫
h(u) dx. To each system as in (51), there

corresponds a hypersurface Mn in a pseudoeuclidean space En+1 in such a way that
equations (51) may be transformed into the form

nt = rx, (52)

where n and r are respectively the unit normal and the radius vector of Mn (see [11]). Let
u1, . . . , un be any system of curvilinear coordinates on Mn. Since the tangent bundle T Mn

is spanned by ∂r
∂ui , i = 1, . . . , n and ∂n

∂ui ∈ T Mn, i = 1, . . . , n, it is possible to introduce the
so-called Weingarten (or shape) operator wi

j (u), by the formulae

∂n

∂uj
= wi

j (u)
∂r

∂uj
,

and (52) may be rewritten in the form (51), with vi
j = (

wi
j

)−1
. Then the eigenvalues of

the velocities vi
j (u) are the radii of the principal curvatures of Mn and the corresponding

eigenfoliations are the curvature surfaces of Mn (see [11]). In particular, the hypersurface
Mn is called Dupin if its principal curvatures are constant along the corresponding curvature
hypersurfaces and such hypersurfaces correspond to weakly nonlinear hydrodynamic-type
systems (i.e. each eigenvalue of the matrix vij (u) in (51) is constant along the corresponding
eigenfolation) as proven in [11].

Following [11], let us call the hypersurfaces associated with two DN systems as in (51)
Lie equivalent if they are connected by a Lie sphere transformation (see [3, 14]).

The n + 2-canonical integrals (the n Casimirs, the momentum and the Hamiltonian) take
the following form in the flat coordinates u1, . . . , un (see [11]):

H = h dx +
1

2

(
n∑

m=1

εm(∂mh)2 + 1

)
dt,

P = 1

2

(
n∑

m=1

εmu2
m + 1

)
dx −

(
h −

n∑
m=1

um∂mh

)
dt,

U i = ui dx + εi∂ih dt, i = 1, . . . , n.

Then the following theorem settles the following important relation between equivalent
hypersurfaces and reciprocal transformations.
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Theorem 4.11. [11]

(A) Suppose that the associated hypersurfaces of two DN systems as in (51) are Lie equivalent.
Then the local Hamiltonian structures of the systems themselves are connected by a
reciprocal transformation.

(B) Suppose that the local Hamiltonian structures of two DN systems are connected by the
canonical reciprocal transformation

dx̂ = αH + βP +
n∑

m=1

γiU
i + η1 dx + η2 dt,

dt̂ = α̃H + βP +
n∑

m=1

γ̃iU
i + η̃1 dx + η̃2 dt,

with α, β, γm, ηj , α̃, β̃, γ̃m, η̃j , (m = 1, . . . , n, j = 1, 2) constants such that

(α + η1)
2 + (β + η2)

2 −
n∑

m=1

εmγ 2
m − η2

1 − η2
2 = 0,

(α̃ + η̃1)
2 + (β̃ + η̃2)

2 −
n∑

m=1

εmγ̃ 2
m − η̃2

1 − η̃2
2 = 0,

(α̃ + η̃1)(α + η1) + (β̃ + η̃2)(β + η2) −
n∑

m=1

εmγ̃mγm − η̃1η1 − η̃2η2 = 0.

(53)

Then the hypersurfaces associated with the two DN systems are Lie equivalent.

We recall that any n × n DN-type system as in (51) admits the n + 2-canonical integrals,
so that theorem 4.11 applies also to the case in which Riemann invariants do not exist.

If we restrict ourselves to the case of DN systems which possess Riemann invariants,
then the compatibility conditions (53) in the flat coordinates have their correspondence in
conditions (A.i)–(A.iii) expressed in the Riemann invariants in theorem 4.1.

Moreover, the same theorem gives the complete characterization of the reciprocal
transformations which preserve local Hamiltonian structure when Riemann invariants exist,
so that the following stronger geometrical characterization holds in the present case.

Theorem 4.12. Let n � 5. The hypersurfaces associated with two diagonalizable strictly
hyperbolic DN systems are connected by a Lie sphere transformation if and only if the
corresponding local Hamiltonian structures of the two DN systems are connected by canonical
reciprocal transformation satisfying theorem 4.1.

Finally, we would like to point out that there is no geometrical interpretation of the
reciprocal transformations when the locality of the Hamiltonian structure is not preserved by
the transformation and both the initial and the transformed systems are of DN type. The most
interesting example in this class are the genus g modulated Camassa–Holm equations already
mentioned in the introduction: such a system possesses two compatible flat metrics which
are mapped to two non-flat metrics associated with the g modulated equations of the first
negative Korteweg–de Vries flow by a reciprocal transformation as proven in [2]. Then, from
theorem 4.11, it follows that the hypersurfaces associated with the two systems are not Lie
equivalent.
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